Towards a conceptual and operational union of bacterial systematics, ecology, and evolution.
نویسنده
چکیده
To completely understand the ecology of a bacterial community, we need to identify its ecologically distinct populations (ecotypes). The greatest promise for enumerating a community's constituent ecotypes is held by molecular approaches that identify bacterial ecotypes as DNA sequence clusters. These approaches succeed when ecotypes correspond with sequence clusters, but some models of bacterial speciation predict a one-to-many and others a many-to-one relationship between ecotypes and sequence clusters. A further challenge is that sequence-based phylogenies often contain a hierarchy of clusters and subclusters within clusters, and there is no widely accepted theory to guide systematists and ecologists to the size of cluster most likely to correspond to ecotypes. While present systematics attempts to use universal thresholds of sequence divergence to help demarcate species, the recently developed 'community phylogeny' approach assumes no universal thresholds, but demarcates ecotypes based on the analysis of a lineage's evolutionary dynamics. Theory-based approaches like this one can give a conceptual framework as well as operational criteria for hypothesizing the identity and membership of ecotypes from sequence data; ecology-based approaches can then confirm that the putative ecotypes are actually ecologically distinct. Bacterial ecotypes that are demonstrated to have a history of coexistence as ecologically distinct lineages (based on sequence analysis) and as a prognosis of future coexistence (based on ecological differences), are the fundamental units of bacterial ecology and evolution, and should be recognized by bacterial systematics.
منابع مشابه
Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics.
The central questions of bacterial ecology and evolution require a method to consistently demarcate, from the vast and diverse set of bacterial cells within a natural community, the groups playing ecologically distinct roles (ecotypes). Because of a lack of theory-based guidelines, current methods in bacterial systematics fail to divide the bacterial domain of life into meaningful units of ecol...
متن کاملLife history traits and gonad histology of an endemic cyprinid fish, Mond spotted barb, Capoeta mandica from Southern Iran
The life history traits and gonad development of an endemic cyprinid fish, the spotted barb, Capoeta mandica (Bianco & Banarescu 1982), from southern Iran was investigated by regular monthly collections from February 2006 through January 2007 and on the basis of microscopic and macroscopic analyses. No information on the spawning characteristics of the fish are available to date. A total of 335...
متن کاملFractal Population Ecology Theory
Abstract Purpose - The aim of this paper is to describe the population ecology theory through fractal thinking, an emergent human operating system that is creative, adaptive, healthy, and evolutionary; furthermore, a parallel is drawn between the population ecology model and the fractal structure. Top-down hierarchies are typically characterized by command and control systems of the authority t...
متن کاملKickxia iranica, a new species from Iran
A new species from Iran is described and illustrated here as Kickxia iranica (Plantaginaceae). Kickxia iranica is morphologically similar to K. commutata, a species native to Mediterranean region, however it can be distinguished from the latter by leaf shape, color of corolla, habit, stem branching and length of leaf, petiole, pedicel and corolla. Notes on its distribution, ecology and phenolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 361 1475 شماره
صفحات -
تاریخ انتشار 2006